Abstract

Although numerous mesoporous silica nanoparticle (MSN) drug carriers and theranostic agents with various surface functionalities have been designed in the last decade, their biocompatibility remains a matter of intensive debate. Here, we systematically evaluated interactions of a series of MSNs possessing different surface functional groups (ionic, polar, neutral, and hydrophobic) with blood constituents, in terms of their hemolytic activity, thrombogenicity, and adsorption of blood proteins on their surfaces. Using a hemolysis assay we showed that surface functionalization can reduce or even completely prevent the hemolytic activity of bare MSNs. We investigated thrombogenicity of MSNs by measuring prothrombin time (PT) and activated partial thromboplastin time (aPTT). We observed that none of the MSNs used in this study exhibit significant thrombogenic activity. Lastly, we examined non-specific protein adsorption on MSN surfaces using human serum albumin (HSA) and gamma globulins (γGs) and found that surface functionalization with ionic groups can greatly reduce protein adsorption. Demonstration of the surface functionalization having a crucial impact on blood compatibility might serve as a guideline for further investigation related to the design of mesoporous silica systems for biomedical applications, and shed light on research towards the ultimate goal of developing smart theranostic systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.