Abstract

Laser beam welding is an essential technology to enable the transformation to enforce e-mobility. When manufacturing light weight structures like the chassis, precision, speed, quality and low deformation can be expected when using the laser beam as a welding heat source. However, the laser beam is typically used at small dimensions and can fail to transfer its energy to the joining partners when the gap between them becomes large. Beam shaping technologies have developed in the last years to be flexibly used for high-power processes and provide an opportunity to alter the energy input and thereby improve the welding quality and gap bridgability. In this work, multi-spot beam shaping was analyzed using up to nine spots. Experiments were performed using different beam shapes in order to redistribute the energy input, recording the process using high-speed imaging for detection of melt pool dimensions. Those were used as input for a simplified analytical model predicting the process collapse based on the available melt material. Several beam shapes created melt pools that support the material availability behind the keyhole(s). Numerical simulations showed that directed melt flows induced by the keyhole(s) can increase the gap bridgability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.