Abstract

This paper describes a study on the burning of pressed and bulk-density samples from a Ni + Al mixture subjected to mechanical activation. It is shown that mechanical activation and dispersion have a different impact on the burning rate of the samples under study. The gas flow hardly changes the burning rate of the bulk-density mixtures. The linear burning rate of the dispersed bulk-density mixture is 1.7 times greater than that of the pressed mixture, and the mass burning rates are equal to each other. The calculations showed that the conductive heat transfer mechanism in the combustion wave of the dispersed bulk density mixture is the principal mechanism.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call