Abstract

Levels of n-6, n-3, and medium-chain fatty acids (MCFA) in milk are highly variable. Higher carbohydrate intakes are associated with increased mammary gland MCFA synthesis, but the role of unsaturated fatty acids for milk MCFA secretion is unclear. This study addressed whether n-6 and n-3 fatty acids, which are known to inhibit hepatic fatty acid synthesis, influence MCFA in rat and human milk and the implications of varying MCFA, n-6, and n-3 fatty acids in rat milk for metabolic regulation in the neonatal liver. Rats were fed a low-fat diet or one of six higher-fat diets, varying in 16:0, 18:1n-9, 18:2n-6, 18:3n-3, and long-chain (LC) n-3 fatty acids. Higher maternal dietary 18:2n-6 or 18:3n-3 did not influence milk MCFA, but lower maternal plasma triglycerides, due to either a low-fat or a high-fat high-LC n-3 diet led to higher milk MCFA. MCFA levels were inversely associated with 18:1n-9, 18:2n-6, and 18:3n-3 in human milk, likely reflecting the association between dietary total fat and unsaturated fatty acids. High LC n-3 fatty acid in rat milk was associated with lower hepatic Pklr, Acly, Fasn, and Scd1 and higher Hmgcs2 in the milk-fed rat neonate, with no effect of milk 18:1n-9, 18:2n-6, or MCFA. These studies show that the dietary fatty acid composition does not impact MCFA secretion in milk, but the fatty acid composition of milk, particularly the LC n-3 fatty acid, is relevant to hepatic metabolic regulation in the milk-fed neonate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.