Abstract

The number of submarine power cables using either direct or alternating current is expected to increase drastically in coming decades. Data concerning the impact of magnetic fields generated by these cables on marine invertebrates are scarce. In this context, the aim of this study was to explore the potential impact of anthropogenic static and time-varying magnetic fields on the behavior of recently settled juvenile European lobsters (Homarus gammarus) using two different behavioral assays. Day-light conditions were used to stimulate the sheltering behavior and facilitate the video tracking. We showed that juvenile lobsters did not exhibit any change of behavior when submitted to an artificial magnetic field gradient (maximum intensity of 200 μT) compared to non-exposed lobsters in the ambient magnetic field. Additionally, no influence was noted on either the lobsters’ ability to find shelter or modified their exploratory behavior after one week of exposure to anthropogenic magnetic fields (225 ± 5 μT) which remained similar to those observed in control individuals. It appears that static and time-varying anthropogenic magnetic fields, at these intensities, do not significantly impact the behavior of juvenile European lobsters in daylight conditions. Nevertheless, to form a complete picture for this biological model, further studies are needed on the other life stages as they may respond differently.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call