Abstract
Numerical technique for examining the transport of nanofluid within the porous container has been applied. The tank has one curved hot wall which is located in the center of the outer cylinder. The single-phase approach to deriving properties of nanofluid was applied and Darcy law has been implemented to involve the porous term in the equation. The format of the equation has been converted to stream function format to remove the pressure terms and final equations were solved via CVFEM. The written code was verified according to the previous data of the published work. Outputs showed that loading alumina causes Nu to augment by 26.71% when Ha is zero and it can be increased about 41.22% when Ha = 15. Applying a magnetic field can reduce the Nu around 37.93% when [Formula: see text]. With increase of strength of rotating cell with the rise of Ra, Nu increases by about 38.22%. Changing the shape of alumina can increase the Nu by about 11.73% when [Formula: see text] and [Formula: see text].
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.