Abstract

The potential importance of electron cyclotron (EC) emission in the local electron power balance in the steady-state regimes of ITER operation with high temperatures, as well as in the DEMO reactor, requires accurate calculation of the one-dimensional (over magnetic surfaces) distribution of the net radiated power density, P EC(ρ). When the central electron temperature increases to ∼30 keV, the local EC radiative loss comprises a substantial fraction of the heating power from fusion alphas and is close to the total auxiliary NBI heating power, P EC(0) ≃ 0.3P α(0) ≃ P aux(0). In the present paper, the model of EC radiative transport in an axisymmetric toroidal plasma is extended to the case of an inhomogeneous magnetic field B(R, Z). The impact of such inhomogeneity on local and total power losses is analyzed in the framework of this model by using the CYNEQ code. It is shown that, for the magnetic field B, temperature T e , density n e , and wall reflection coefficient R w expected in ITER and DEMO, accurate simulations of the EC radiative loss require self-consistent 1.5D transport analysis (i.e., one-dimensional simulations of plasma transport and two-dimensional simulations of plasma equilibrium). It is shown that EC radiative transport can be described with good accuracy in the 1D approximation with the surface-averaged magnetic field, B(ρ) = 〈B(R, Z)〉 ms . This makes it possible to substantially reduce the computational time required for time-dependent self-consistent 1.5D transport analysis. Benchmarking of the CYNEQ results with available results of the RAYTEC, EXACTEC, and CYTRAN codes is performed for various approximations of the magnetic field.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call