Abstract
The interaction between the vortex lines in a type-II superconductor is mediated by currents. In the absence of transverse screening this interaction is long-ranged, stiffening up the vortex lattice as expressed by the dispersive elastic moduli. The effect of disorder is strongly reduced, resulting in a mean-squared displacement correlator <u^2(R,L)> = <[u(R,L)-u(0,0)]^2> characterized by a mere logarithmic growth with distance. Finite screening cuts the interaction on the scale of the London penetration depth \lambda and limits the above behavior to distances R<\lambda. Using a functional renormalization group (RG) approach, we derive the flow equation for the disorder correlation function and calculate the disorder-averaged mean-squared relative displacement <u^2(R)> \propto ln^{2\sigma} (R/a_0). The logarithmic growth (2\sigma=1) in the perturbative regime at small distances [A.I. Larkin and Yu.N. Ovchinnikov, J. Low Temp. Phys. 34, 409 (1979)] crosses over to a sub-logarithmic growth with 2\sigma=0.348 at large distances.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.