Abstract

Typical for broad-area laser (BAL) diodes operating in a continuous-wave mode is a narrowing of the near-field (NF) width at the output facet for high injection currents (output powers). This phenomenon increases the facet load of BALs, resulting in a reduction in the level of catastrophic optical mirror damage. In this letter, we demonstrate theoretically that thermally induced changes in the refractive index in both lateral and longitudinal directions not only cause the NF narrowing at the front facet but also a broadening of the NF at the back facet. In contrast, a sole lateral self-heating induced variation in the refractive index (commonly referred to as thermal lensing) does not result in a NF narrowing. Our theoretical findings are confirmed by measurements of the current-dependent profiles of the NF at the back and front facets of a BAL with a stripe width of 120 μm emitting at 960 nm. Furthermore, our quasi three-dimensional thermo-electro-optic simulations indicate that a longitudinally homogeneous device temperature can reduce the front-facet load while keeping the beam quality unchanged compared with the experimental results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.