Abstract
It is demonstrated here that local dynamics have the ability to strongly modify the entangling power of unitary quantum gates acting on a composite system. The scenario is common to numerous physical systems, in which the time evolution involves local operators and nonlocal interactions. To distinguish between distinct classes of gates with zero entangling power we introduce a complementary quantity called gate-typicality and study its properties. Analyzing multiple applications of any entangling operator interlaced with random local gates, we prove that both investigated quantities approach their asymptotic values in a simple exponential form. This rapid convergence to equilibrium, valid for subsystems of arbitrary size, is illustrated by studying multiple actions of diagonal unitary gates and controlled unitary gates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.