Abstract
The role of membrane traffic is to transfer cargo between distinct subcellular compartments. Each individual trafficking event involves the creation, transport and fusion of vesicular and tubular carriers that are formed and regulated via cytoplasmic coat protein complexes. The dynamic nature of this process is therefore highly suitable for studying using live cell imaging techniques. Although these approaches have raised further questions for the field, they have also been instrumental in providing essential new information, in particular relating to the morphology of transport carriers and the exchange kinetics of coat proteins and their regulators on membranes. Here, we present an overview of live cell-imaging experiments that have been used in the study of coated-vesicle transport, and provide specific examples of their impact on our understanding of coat function.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.