Abstract
BackgroundLung alveolarization, the development of the alveoli, is disturbed in preterm infants with bronchopulmonary dysplasia (BPD), the most common complication of preterm birth. Animal models based on oxygen toxicity to the developing mouse lung are used to understand the mechanisms of stunted alveolarization in BPD, and to develop new medical management strategies for affected infants. The toxicity of genetic and pharmacological interventions, together with maternal cannibalism, reduce mouse litter sizes in experimental studies. The impact of litter size on normal and stunted lung alveolarization is unknown, but may influence data interpretation. The aim of the study was to assess the impact of litter size on normal and oxygen-stunted lung alveolarization in mice. MethodsBPD was experimentally modelled in newborn C57BL/6J mice by exposure to 85% O2 in the inspired air for the first 14 days of post-natal life. Perturbations to mouse lung architecture were assessed by design-based stereology, in which the alveolar density, total number of alveoli, gas-exchange surface area, and the septal thickness were estimated. ResultsLitter sizes of a single mouse were not viable to post-natal day 14. Normal lung alveolarization was comparable in mouse pups in litters of 2, 4, 6, and 8 pups per litter. Hyperoxia was equally effective at stunting lung alveolarization in mouse pups in litters of 2, 4, 6, and 8 pups per litter. ConclusionsStudies on normal lung alveolarization as well as alveolarization stunted by oxygen toxicity can be undertaken in mouse litters as small as two pups, and as large as eight pups. There is no evidence to suggest that data cannot be compared within and between litters of two to eight mouse pups.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.