Abstract

The study of many membrane enzymes in an aqueous medium is difficult due to the loss of their catalytic activity, which makes it necessary to use membrane-like systems, such as reverse micelles of surfactants in nonpolar organic solvents. However, it should be taken into account that micelles are a simplified model of natural membranes, since membranes contain many different components, a significant part of which are phospholipids. In this work, we studied the impact of the main phospholipids, phosphatidylcholine (PC) and phosphatidylethanolamine (PE), on the activity of membrane enzymes using galactonolactone oxidase from Trypanosoma cruzi (TcGAL) and L-galactono-1,4-lactone dehydrogenase from Arabidopsis thaliana (AtGALDH) as an examples. Effect of the structure (and charge) of the micelle-forming surfactant itself on the activity of both enzymes has been studied using an anionic surfactant (AOT), a neutral surfactant (Bridge-96), and a mixture of cationic and anionic surfactants (CTAB and AOT) as an examples. The pronounced effect of addition of PC and PE lipids on the activity of AtGALDH and TcGAL has been detected, which manifests as increase in catalytic activity and significant change in the activity profile. This can be explained by formation of the tetrameric form of enzymes and/or protein-lipid complexes. By varying composition and structure of the micelle-forming surfactants (AOT, CTAB, and Brijdge-96 and their combinations) it has been possible to change catalytic properties of the enzyme due to effect of the surfactant on the micelle size, lipid mobility, charge, and rigidity of the matrix itself.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call