Abstract

Particulate backscattering coefficient is a main inherent optical properties (IOPs) of water, which is also a determining factor of ocean color and a basic parameter for inversion of satellite ocean color remote sensing. In-situ measurement with optical instruments is currently the main method for obtaining the particulate backscattering coefficient of water. Due to reflection and refraction by the mirrors in the instrument optical path, the emergent light source from the instrument may be partly polarized, thus to impact the measurement accuracy of water backscattering coefficient. At present, the light polarization of measuring instruments and its impact on the measurement accuracy of particulate backscattering coefficient are still poorly known. For this reason, taking a widely used backscattering coefficient measuring instrument HydroScat6 (HS-6) as an example in this paper, the polarization characteristic of the emergent light from the instrument was systematically measured, and further experimental study on the impact of the light polarization on the measurement accuracy of the particulate backscattering coefficient of water was carried out. The results show that the degree of polarization(DOP) of the central wavelength of emergent light ranges from 20% to 30% for all of the six channels of the HS-6, except the 590 nm channel from which the DOP of the emergent light is slightly low (-15%). Therefore, the emergent light from the HS-6 has significant polarization. Light polarization has non-neglectable impact on the measurement of particulate backscattering coefficient, and the impact degree varies with the wave band, linear polarization angle and suspended particulate matter (SPM) concentration. At different SPM concentrations, the mean difference caused by light polarization can reach 15.49%, 11.27%, 12.79%, 14.43%, 13.76%, and 12.46% in six bands, 420, 442, 470, 510, 590, and 670 nm, respectively. Consequently, the impact of light polarization on the measurement of particulate backscattering coefficient with an optical instrument should be taken into account, and the DOP of the emergent light should be reduced as much as possible.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.