Abstract
Online forums have become the main source of knowledge over the Internet as data are constantly flooded into them. In most cases, a question in a web forum receives several responses, making it impossible for the question poster to obtain the most suitable answer. Thus, an important problem is how to automatically extract the most appropriate and high-quality answers in a thread. Prior studies have used different combinations of both lexical and nonlexical features to retrieve the most relevant answers from discussion forums, and hence, there is no standard/general set of features that could be effectively used for relevant answer/reply post classification. However, this study proposed an answer detection model that is exclusively relying on lexical features and employs a random forest classifier for classification of answers in discussion boards. Experimental results showed that the proposed answer detection model outperformed the baseline technique and other state-of-the-art machine learning algorithms in terms of classification accuracy on benchmark forum datasets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.