Abstract

The distribution of masses of neutron stars, particularly the maximum mass value, is considered a probe of their formation, evolution and internal physics (i.e., equation of state). This mass distribution could in principle be inferred from the detection of gravitational waves from binary neutron star mergers. Using mock catalogues of 105 dark sirens events, expected to be detected by Einstein Telescope over an operational period of , we show how the biased luminosity distance measurement induced by gravitational lensing affects the inferred redshift and mass of the merger. This results in higher observed masses than expected. Up to 2% of the events are predicted to fall above the maximum allowed neutron star mass depending on the intrinsic mass distribution and signal-to-noise ratio threshold adopted. The underlying true mass distribution and maximum mass could still be approximately recovered in the case of bright standard sirens.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.