Abstract

Trypsin inhibitor was extracted from the seed flour of soybean (SB; Glycine max), mung bean (MB; Vigna radiata), cowpea bean (CP; Vigna unguiculata) and adzuki bean (AB; Vigna angularis) using 0.15M NaCl, followed by heat precipitation at 70°C. The extract from SB showed the highest specific trypsin inhibitory activity, followed by those from MB, CP and AB, respectively. Based on inhibitory activity staining, molecular weights (MWs) of trypsin inhibitor from SB, MB, CP and AB were 20.1, 14, 10 and 13kDa, respectively. The SB extract powder (SBEP) containing trypsin inhibitor in the range of 10–100TIU/g effectively prevented the degradation of γ-, β- and α-chains of collagenolytic proteins of leatherjacket skin subjected to incubation at 50°C for 30min. The impact of SBEP on the extraction yield, physical and functional properties of gelatin from leatherjacket skin was investigated. The gelatin extracted in the presence of SBEP contained α1 and α2 chains as the predominant components with some degradation peptides. FTIR spectra indicated the significant loss of molecular order of triple helix and higher degradation was found in gelatin extracted in the absence of SBEP. Gelatin extracted in the presence of SBEP had the higher gel strength (232.8–268.5g) than that extracted in the absence of SBEP (90.4g). Higher foam stability (FS) but lower emulsion stability index (ESI) was observed in the former. Therefore, the addition of SBEP effectively prevented the degradation of gelatin from the skin of unicorn leatherjacket, thereby yielding the gelatin with improved gel strength and foam stability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.