Abstract
Inspired by real-life applications, mainly in hand-intensive manufacturing, the incorporation of learning effects into scheduling problems has garnered attention in recent years. This paper deals with the flowshop scheduling problem with a learning effect, when minimising the makespan. Four approaches to model the learning effect, well-known in the literature, are considered. Mathematical models are providing for each case. A solver allows us to find the optimal solution in small problem instances, while a Simulated Annealing algorithm is proposed to deal with large problem instances. In the latter, the initial solution is obtained using the well-known Nawaz-Enscore-Ham algorithm, and two local search operators are evaluated. Computational experiments are carried out using benchmark datasets from the literature. The Simulated Annealing algorithm shows a better result for learning approaches with fast learning effects as compared to slow learning effects. Finally, for industrial decision makers, some insights about how the learning effect model might affect the makespan minimisation flowshop scheduling problem are presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.