Abstract

Coronary access (CA) is a major concern in redo-transcatheter aortic valve implantation (TAVI) for failing supra-annular self-expanding transcatheter aortic valves (TAVs). This ex vivo study evaluated the benefit of leaflet splitting (LS) on subsequent CA after redo-TAVI in anatomies deemed at high risk of unfeasible CA. Ex vivo, patient-specific models were printed three-dimensionally. Index TAVI was performed using ACURATE neo2 or Evolut PRO (TAV-1) at the standard implant depth and with different degrees of commissural misalignment (CMA). Redo-TAVI was performed using the balloon-expandable SAPIEN 3 Ultra (TAV-2) at different implant depths with commissural alignment. Selective CA was attempted for each configuration before and after LS in a pulsatile flow simulator. The leaflet splay area was assessed on the bench. In matched comparisons of 128 coronary cannulations across 64 redo-TAVI configurations, the overall feasibility of CA significantly increased after LS (60.9% vs 18.7%; p<0.001). The effect of LS varied according to the sinotubular junction height, TAV-1 design, TAV-1 CMA, and TAV-2 implant depth, given TAV-2 alignment. LS enabled CA for up to CMA 45° with the ACURATE neo2 TAV-1 and up to CMA 30° with the Evolut PRO TAV-1. The combination of LS and a low TAV-2 implant provided the highest feasibility of CA after redo-TAVI. The leaflet splay area ranged from 25.60 mm2 to 37.86 mm2 depending on the TAV-1 platform and TAV-2 implant depth. In high-risk anatomies, LS significantly improves CA feasibility after redo-TAVI for degenerated supra-annular self-expanding platforms. Decisions on redo-TAVI feasibility should be carefully individualised, taking into account the expected benefit of LS on CA for each scenario.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call