Abstract

Band structure of transition metal oxides plays a critical role in many applications such as photo-catalysis, photovoltaics, and electroluminescent devices. In this work we report findings that the band structure of MoO3 can be significantly altered by a distortion in the octahedral coordination structure. We discovered that, in addition to epitaxial type of structural strain, chemical force such as hydrogen inclusion can also cause extended lattice distortion. The lattice distortion in hydrogenated MoO3 led to a significant reduction of the energy gap, overshadowing the Moss-Burstein effect of band filling. Charge doping simulations revealed that filling of conduction band drives the lattice distortion. This suggests that any charge transfer or n-type electron doping could lead to lattice distortion and consequentially a reduction in energy gap.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.