Abstract

Pseudovertical Schottky barrier diodes (SBDs) are fabricated on a single‐crystal diamond substrate. Herein, the structural and electrical influence of laser‐induced graphitization which takes place during the laser‐dicing process is investigated. Before laser irradiation, the fabricated SBDs show a high rectifying ratio of more than 11 orders at ±10 V and undetectable leakage current. Ideality factor (n) and Schottky barrier height (ϕ b) are estimated to be 1.09 and 1.35 eV, respectively. After laser irradiation, the SBDs still exhibit good diode behavior, in which n and ϕ b values slightly change by 10%. Leakage current is increased about two orders of magnitude and breakdown voltage is degraded from 940 to 375 V due to the presence of graphite debris. After removing the graphite debris utilizing the oxygen plasma cleaning process through an inductively coupled plasma (ICP) system, all SBDs are recovered back to typical diode characteristics. It is found that strain and surface defects that may be introduced during laser dicing and post‐ICP etching do not severely influence SBD characteristics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.