Abstract

Objective: To assess the impact of laser power and firing angle on coagulation efficiency for closing placental anastomoses in the treatment of twin-twin transfusion syndrome. Methods: We used an ex vivo blood-perfused human placenta model to compare time to complete coagulation using 30 vs. 50 W of neodymium-doped yttrium aluminum garnet laser power and using a firing angle of 90° vs. 45°. Placentas were perfused with pig blood at 5 mL/min. Differences were analyzed using independent-samples t test, Mann-Whitney U test, or χ<sup>2</sup> test as appropriate. Results: Coagulation took less time and energy using 50 W (n = 53) compared to 30 W (n = 52), 11 vs. 22 s (p < 0.001), and 557 vs. 659 J (p = 0.007). Perpendicular coagulation (n = 53) took less time and energy compared to a 45° angle (n = 21), 11 vs. 17 s (p = 0.004), and 557 vs. 871 J (p = 0.004). Bleeding complicated 2 (3%) measurements in the 50-W group, 5 (10%) in the 30-W group, and 3 (14%) in the 45° group. Discussion: In a highly controlled model, a 50-W laser power setting was more energy efficient than 30 W in coagulating a placental vein. A more perpendicular laser firing angle resulted in more efficient coagulation. Furthermore, bleeding due to vessel wall disruption occurred more often with lower power and a more tangential approach.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call