Abstract

The depth homogeneity of laser-treated zones is one possible factor to define the quality and efficacy of altered mechanical properties in materials. For instance, half-rounded cross-sectional shapes of laser hardened zones using Gaussian beams provide dissimilar hardened depth in the edges and center of the treated area. This means that the in-depth distribution of compressive residual stress varies between the edges and the center of the hardened area. Nonhomogeneity of compressive residual stress distributions can inhibit fatigue properties and can lead to product failure. The utilization of oscillated laser beams has been proven to improve the welding efficiency and energy input distribution to the material, which promises achieving a homogeneous depth of laser-treated zones in hardening applications. Therefore, this work examines the influence of triangular, square, and circular beam oscillation strategies on the energy input distribution during the process and the geometry of the laser-treated zones on microalloyed steel. Laser beam pathways were assembled using a vector graphic editor to visualize the energy distribution from each oscillation strategy. Cross section images of the hardened tracks were taken and related to the thermal energy input profiles. It was revealed that each oscillation strategy demonstrates characteristic temporal and spatial thermal energy input distribution, influencing the geometry of the hardened zone. The circular oscillation strategy produced a widely constant depth in contrary to the triangular and square beam oscillation due to its characteristic energy distribution that allows homogeneous heat dissemination in the material. This confirms that the laser beam oscillation strategy can tailor the energy input distribution to optimize the processing outcome.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.