Abstract

Tropical storms simulated by a nine-member ensemble of GCM integrations forced by observed SSTs have been tracked by an objective procedure for the period 1980‐88. Statistics on tropical storm frequency, intensity, and first location have been produced. Statistical tools such as the chi-square and the Kolmogorov‐Smirnov test indicate that there is significant potential predictability of interannual variability of simulated tropical storm frequency, intensity, and first location over most of the ocean basins. The only common point between the nine members of the ensemble is the SST forcing. This implies that SSTs play a fundamental role in model tropical storm frequency, intensity, and first location interannual variability. Although the interannual variability of tropical storm statistics is clearly affected by SST forcing in the GCM, there is also a considerable amount of noise related to internal variability of the model. An ensemble of atmospheric model simulations allows one to filter this noise and gain a better understanding of the mechanisms leading to interannual tropical storm variability. An EOF analysis of local SSTs over each ocean basin and a combined EOF analysis of vertical wind shear, 850-mb vorticity, and 200-mb vorticity have been performed. Over some ocean basins such as the western North Atlantic, the interannual frequency of simulated tropical storms is highly correlated to the first combined EOF, but it is not significantly correlated to the first EOF of local SSTs. This suggests that over these basins the SSTs have an impact on the simulated tropical storm statistics from a remote area through the large-scale circulation as in observations. Simulated and observed tropical storm statistics have been compared. The interannual variability of simulated tropical storm statistics is consistent with observations over the ocean basins where the model simulates a realistic interannual variability of the large-scale circulation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.