Abstract

Rare earth Pr3+ ions with its larger ionic radii substituted CoFe2O4 nanoparticles with x ranging from 0.0 to 0.1 were synthesized by sol–gel auto-combustion chemical method. Powder X-ray diffraction (XRD), scanning electron microscopy (SEM), infrared spectroscopy (IR) and vibrating sample magnetometer (VSM) were employed to characterize the physical properties of these ferrite nanoparticles. XRD pattern reveals the formation of cubic spinel ferrite with the signature of PrFeO3 phases for x⩾0.05. SEM images show that the synthesized samples are in good homogeneity with uniformly distributed grain. The results of IR spectroscopy analysis indicated that the functional groups of cobalt spinel ferrite were formed during the sol–gel process. The cations distribution between the tetrahedral (A-site) and octahedral sites (B-site) has been estimated by XRD analysis. Room temperature magnetic measurement shows saturation magnetization and coercivity increased from 54.7 to 64.2emu/g and 644 to 1013Oe, respectively with the increasing Pr3+ substitution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.