Abstract

While bryophytes greatly contribute to plant diversity of semi-natural grasslands, little is known about the relationships between land-use intensity, productivity, and bryophyte diversity in these habitats. We recorded vascular plant and bryophyte vegetation in 85 agricultural used grasslands in two regions in northern and central Germany and gathered information on land-use intensity. To assess grassland productivity, we harvested aboveground vascular plant biomass and analyzed nutrient concentrations of N, P, K, Ca and Mg. Further we calculated mean Ellenberg indicator values of vascular plant vegetation. We tested for effects of land-use intensity and productivity on total bryophyte species richness and on the species richness of acrocarpous (small & erect) and pleurocarpous (creeping, including liverworts) growth forms separately. Bryophyte species were found in almost all studied grasslands, but species richness differed considerably between study regions in northern Germany (2.8 species per 16 m2) and central Germany (6.4 species per 16 m2) due environmental differences as well as land-use history. Increased fertilizer application, coinciding with high mowing frequency, reduced bryophyte species richness significantly. Accordingly, productivity estimates such as plant biomass and nitrogen concentration were strongly negatively related to bryophyte species richness, although productivity decreased only pleurocarpous species. Ellenberg indicator values for nutrients proved to be useful indicators of species richness and productivity. In conclusion, bryophyte composition was strongly dependent on productivity, with smaller bryophytes that were likely negatively affected by greater competition for light. Intensive land-use, however, can also indirectly decrease bryophyte species richness by promoting grassland productivity. Thus, increasing productivity is likely to cause a loss of bryophyte species and a decrease in species diversity.

Highlights

  • Conservation of biodiversity is one of major ecological challenges nowadays [1]

  • In HainichDun all plots were on calcareous mineral soils with large clay content (Cambisols and Stagnosols), whereas in SchorfheideChorin in addition to sandy mineral soils (Cambisols, Luvisols, and Gleysols) on the glacial moraines, about half of the plots occurred on drained organic fen soils (Histolols), which are frequently flooded in winter and early spring

  • The total bryophyte species richness was positively correlated to species richness of vascular plants (Fig. 2)

Read more

Summary

Introduction

Conservation of biodiversity is one of major ecological challenges nowadays [1]. In Central Europe, semi-natural grasslands are hotspots of biodiversity for both plants and animals [2,3,4]. Bryophyte species can be affected by land use, either directly by mechanical impacts such as grazing and mowing, by toxic impacts of high nitrogen applications [17] or indirectly through increased productivity leading to asymmetric light competition with tall-growing plant species [4]. Despite their relevance only few ecological studies in grasslands included bryophytes. Bryophyte vegetation of rather common ecosystems like permanent agricultural grasslands was rarely studied or exhibited a very restricted species spectrum [13,15]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call