Abstract

AbstractPrevious studies have evaluated the economics and ecosystem services of perennial bioenergy crops when replacing grain crops on marginal (environmentally critical and/or underproductive) lands. This study used life‐cycle analysis (LCA) to investigate the greenhouse gas (GHG) emissions of perennial crops when grown in targeted landscape positions and their impact in reducing nitrogen leaching. Specifically, LCA was performed to evaluate the GHG emissions of growing shrub willow on marginal lands in the Indian Creek watershed in Illinois to assess the sustainability of strategically planted willow buffer strips. Willow was grown as a short‐rotation woody crop with a 21‐year rotation under three scenarios including a business‐as‐usual (BAU) field‐scale production with nitrogen fertilizer application and two unfertilized subfield buffer scenarios – landscape single subfield (LSSF) or landscape multiple subfields (LMSF) – grown alongside cornfields to reduce nitrate leaching. Each scenario also considers three field sizes, 2.0, 10.1, and 40.5 ha. The average annual GHG emissions from willow production and depot transportation were 0.32–0.77 Mg‐CO2e ha−1 with the lowest emissions for the LSSF scenario and highest for the BAU. The GHG emissions for the LSSF and BAU scenarios are independent of field size, whereas LMSF emissions increase with increasing field size, 0.41 Mg‐CO2e ha−1 at 2.0 ha and 0.76 Mg‐CO2e ha−1 at 40.5 ha. Emission results were most sensitive to the willow yield, followed by fertilizer application rate (BAU only), harvest fuel consumption, and transportation distance. © 2022 Society of Chemical Industry and John Wiley & Sons, Ltd

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call