Abstract

Engineered landfill biocovers (LBCs) minimize the escape of methane into the atmosphere through biological oxidation. Vegetation plays a crucial role in LBCs and can suffer from hypoxia caused by the displacement of root-zone oxygen due to landfill gas and competition for oxygen with methanotrophic bacteria. To investigate the impact of methane gas on vegetation growth, we conducted an outdoor experiment using eight vegetated flow-through columns filled with a 45 cm mixture of 70% topsoil and 30% compost, planted with three types of vegetation: native grass blend, Japanese millet, and alfalfa. The experiment included three control columns and five columns exposed to methane, as loading rates gradually increased from 75 to 845 gCH4/m2/d over a period of 65 days. At the highest flux, we observed a reduction of 51%, 31%, and 19% in plant height, and 35%, 25%, and 17% in root length in native grass, Japanese millet, and alfalfa, respectively. The column gas profiles indicated that oxygen concentrations were below the levels required for healthy plant growth, which explains the stunted growth observed in the plants used in this experiment. Overall, the experimental results demonstrate that methane gas has a significant impact on the growth of vegetation used in LBCs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.