Abstract

Land use influences physico-chemical and water transmission properties of soil, which ultimately determine the suitability of land for different purposes. In present study, impact of different land use (forest and agriculture) on selected physicochemical and hydrological properties of soil was evaluated and compared with a reference site (uncultivated ravinous wasteland). Land use influenced infiltration rate, bulk density, mean weight diameter of aggregates and plant available water of soils. After 25 years of plantation of forest species, soil organic carbon content increased by more than twofold and mean weight diameter of aggregates by 2- to 6-fold in comparison to reference site. Significant reduction in soil bulk density (4–18%) and increase in steady state infiltration rate (1.5–2 times) was observed under the forest land use system. Conversion of ravine to forest system resulted in significant improvement in moisture retention capacity of soil. Conversion of ravine landform to agriculture adversely affected the soil bulk density and infiltration rate. The study provided practical information regarding rehabilitation potential of different tree species (Prosopis juliflora, Leucaena leucocephala, Acacia nilotica and Azadirachta indica) that could be used for restoration of ustifluvent soil susceptible to gully erosion in the semi-arid region.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call