Abstract

The powerful combination of p-polarized multiple-angle incidence resolution spectroscopy (pMAIRS) and grazing incidence X-ray diffraction (GIXD) is applied to the structural characterization of zinc tetraphenylporphyrin (ZnTPP) in vapor-deposited films as a function of the deposition rate. The deposition rate is revealed to have an impact on the initial film structure and its conversion by thermal annealing. The pMAIRS spectra reveal that a fast deposition rate yields a kinetically restricted amorphous film of ZnTPP having a “face-on orientation”, which is readily discriminated from another “randomly oriented” amorphous film generated at a slow deposition rate. In addition, the GIXD patterns reveal that the film grown at a slow deposition rate involves a minor component of triclinic crystallites. The different initial film structure significantly influences the thermal conversion of ZnTPP films. The randomly oriented amorphous aggregates with the triclinic crystallite seeds are converted to the thermodyna...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call