Abstract

Localized diode breakdown in mc-Si solar cells is suspected to be potentially critical to module encapsulation when occurring during the operation of a shaded solar cell in reverse. By modelling the operating point of two model cells under varying shading conditions, we show that every cell, breaking down or not, can suffer from significant power dissipation in a standard industrial module. We discuss, that early breakdown can even be beneficial concerning worst case total power dissipation in a shaded cell and module output power. Experimentally, we show that type I, II and III breakdown sites which were identified by DLIT and EL on solar cells from umg and virgin-grade feedstock have not led to critical hot spot temperatures. However, a newly observed edge effect which was activated at approximately 160°C after a significant shading time severely damaged the investigated module. Partial shading of solar cells revealed that the dark part of a cell, even when exhibiting the dominant breakdown mechanism during full shading, can be dominated by the illuminated part, which is supported by modelling a partially shaded cell with a parallel connection of a fully shaded and a fully illuminated cell.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.