Abstract

Origami-based structures have expanded in recent years due to new mathematical formulations along with materials that can achieve the bending requirements, often in the form of composites. While current methods of manufacturing can produce complex structures, they lack the ability to scale efficiently. A novel manufacturing technique is discussed in this work that allows for a simpler and lower cost fabrication that can scale to larger structures through robotic deposition. Samples made from this technique are investigated to understand the mechanical bending performance and effect on the tensile properties. Results show an orientation-dependent response for the material with the 45° samples having a direct impact on the tensile response. However, their bending response proved to be stiffer compared to the samples, holding more consistent bend radii. Joint stacking was also investigated, where discrete layers were not bonded together and showed an increase in force required to bend compared to the completely bonded samples. The results provide insight into how integrated composite hinges can perform in complex structures. The advancement of composite origami technology additionally works to reduce the overall number or parts and fasteners that are needed to achieve detailed deployable structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.