Abstract

The increasing application of iterative reconstruction algorithms in clinical computed tomography to improve image quality and reduce radiation dose, elicits strong interest, and needs model observers to optimize CT scanning protocols objectively and efficiently. The current paradigm for evaluating imaging system performance relies on Fourier methods, which presuppose a linear, wide-sense stationary system. Long-range correlations introduced by iterative reconstruction algorithms may narrow the applicability of Fourier techniques. Differences in the implementation of reconstruction algorithms between manufacturers add further complexity. The present work set out to quantify the errors entailed by the use of Fourier methods, which can lead to design decisions that do not correlate with detectability. To address this question, we evaluated the noise properties and the detectability index of the ideal linear observer using the spatial approach and the Fourier-based approach. For this purpose, a homogeneous phantom was imaged on two scanners: the Revolution CT (GE Healthcare) and the Somatom Definition AS+ (Siemens Healthcare) at different exposure levels. Images were reconstructed using different strength levels of IR algorithms available on the systems considered: Adaptative Statistical Iterative Reconstruction (ASIR-V) and Sinogram Affirmed Iterative Reconstruction (SAFIRE). Our findings highlight that the spatial domain estimate of the detectability index is higher than the Fourier domain estimate. This trend is found to be dependent on the specific regularization used by IR algorithms as well as the signal to be detected. The eigenanalysis of the noise covariance matrix and of its circulant approximation yields explanation about the evoked trends. In particular, this analysis suggests that the predictive power of the Fourier-based ideal linear observer depends on the ability of each basis analyzed to be relevant to the signal to be detected. The applicability of Fourier techniques is dependent on the specific regularization used by IR algorithms. These results argue for verifying the assumptions made when using Fourier methods since Fourier-task-based detectability index does not always correlate with signal detectability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.