Abstract

Water resources worldwide are limited, especially in desert areas like Saudi Arabia. Therefore, the rational and sustainable management of irrigation water supply is an imperative requirement. This research aimed to assess how different irrigation systems, such as partial root-zone drying (PRD) and regulated deficit irrigation (RDI), would affect the growth of cucumber crops. The study specifically focused on comparing the impact of these irrigation techniques when implemented with surface (S) and subsurface (SB) drip irrigation methods. The research was conducted in both controlled environments and open-field settings in central Saudi Arabia. Additionally, the study aimed to promote the adoption of RDI and PRD irrigation systems among Saudi farmers as a means to conserve essential irrigation water resources. The treatments consisted of two groups: the drip irrigation group with a single line (RDI), which includes full irrigation and deficit irrigation, and the group with the (PRD) for the root zone with two lines with the same irrigation ratios as the first group. The productivity of the RDI-S regular drip irrigation treatment was considered 100 % as the control on which the results of all treatments are measured. The results showed that in terms of irrigation technique, the PRD-SB technique had the highest productivity during the winter season in a greenhouse, with an average of 13.8 kg m−2 for all irrigation levels, while the RDI-SB technique had the highest productivity during the summer season, with an average of 16.1 kg m−2. Regarding irrigation level results, the study showed that an irrigation level of 100 % is the highest yield in all irrigation techniques, with a general average of 14.9 kg m−2 for all irrigation techniques during the winter season and 16.4 kg m−2 during the summer. The study showed that irrigation with the PRD-SB system was the most productive in the open field at all irrigation levels, with an average of 7.3 kg m−2. It could be concluded that using PRD and RDI systems for indoor and outdoor cucumber production can save irrigation water in arid regions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.