Abstract

The biogeochemical cycling of iron (Fe) or sulfur (S) in paddy soil influences the cadmium (Cd) and arsenic (As) migration. However, the influence of coupled reduction effects and reaction precedence of Fe and S on the bioavailability of Cd and As is still not fully understood. This study aimed to reveal the influence of Fe and S reduction on soil Cd and As mobility under various pe + pH conditions and to elucidate the related mechanism in subtropical China. According to the findings, higher adsorption from Fe reduction caused high-crystalline goethite (pe + pH > 2.80) to become amorphous ferrihydrite, which in turn caused water-soluble Cd (62.0%) to first decrease. Cd was further decreased by 72.7% as a result of the transformation of SO42- to HS-/S2- via sulfate reduction and the formation of CdS and FeS. As release (an increase of 8.1 times) was consequently caused by the initial reduction and dissolution of iron oxide (pe + pH > 2.80). FeS had a lesser impact on the immobilization of As than sulfate-mediated As (V) reduction in the latter stages of the reduction process (pe + pH < 2.80). pe + pH values between 3 and 3.5 should be maintained to minimize the bioavailability of As and Cd in moderate to mildly polluted soil without adding iron oxides and sulfate amendments. The practical remediation of severely co-contaminated paddy soil can be effectively achieved by using Fe and S additions at different pe + pH conditions. This technique shows promise in reducing the bioavailability of Cd and As.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call