Abstract

Radioactive contamination has the potential to cause damage to DNA and other biomolecules. Anthropogenic sources of radioactive contamination include accidents in nuclear power plants, such as the one in Chornobyl in 1986 which caused long-term radioactive pollution. Studies on animals within radioactive zones have provided us with a greater understanding of how wildlife can persevere despite chronic radiation exposure. However, we still know very little about the effects of radiation on the microbial communities in the environment. We examined the impact of ionizing radiation and other environmental factors on the diversity and composition of environmental microbiomes in the wetlands of Chornobyl. We combined detailed field sampling along a gradient of radiation together with 16S rRNA high-throughput metabarcoding. While radiation did not affect the alpha diversity of the microbiomes in sediment, soil, or water, it had a significant effect on the beta diversity in all environment types, indicating that the microbial composition was affected by ionizing radiation. Specifically, we detected several microbial taxa that were more abundant in areas with high radiation levels within the Chornobyl Exclusion Zone, including bacteria and archaea known to be radioresistant. Our results reveal the existence of rich and diverse microbiomes in Chornobyl wetlands, with multiple taxonomic groups that are able to thrive despite the radioactive contamination. These results, together with additional field and laboratory-based approaches examining how microbes cope with ionizing radiation will help to forecast the functionality and re-naturalization dynamics of radiocontaminated environments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call