Abstract

Microcrystalline cellulose and Bombyx mori silk blended biocomposite films were regenerated using various imidazolium-based ionic liquids. The films were characterized to understand the effect of the inter- and intra-molecular interactions upon the morphology and thermal properties. Various techniques were implemented to investigate structural, morphological and thermal properties of the biocomposite films, including Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC) and X-ray scattering. Results show that the type of ionic liquid has strong influence on the structure of silk-cellulose composites that can form either amorphous or semicrystalline structures. While the thermal properties are independent of the type of cation in ionic liquids, the levels of β-sheet configuration are dependent on the type of anion, which further causes changes on the biocomposite thermal properties. The topological image provided information to support morphological effects on the varying ionic liquids and X-ray scattering allowed for insight on the role of ionic liquids on the crystallinity and the spacing differences in biocomposite films. The results have demonstrated that there is a direct relationship between the intermolecular interactions in films and the anion structure of the ionic liquids.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.