Abstract

Drift magnetohydrodynamic (MHD) equations have been derived in order to investigate the ion diamagnetic drift effect on the stability to ideal MHD modes in rotating plasmas. These drift MHD equations have been simplified with the Frieman-Rotenberg formalism under the incompressible assumption, and a new code, MINERVA-DI, has been developed to solve the derived extended Frieman-Rotenberg equation. Benchmark results of the MINERVA-DI code show good agreements with the analytic theory discussing the stability to an internal kink mode and that to a ballooning mode in static plasmas. The stability analyses of the ballooning mode with respect to toroidal rotation with the ion diamagnetic drift effect have been performed using MINERVA-DI. The stabilizing effect by the ion diamagnetic drift is found to be negligible when the rotation frequency is large compared to the ion diamagnetic drift frequency. The direction of plasma rotation affects the ballooning mode stability when the ion diamagnetic drift effect is taken into account. It is identified that there are two physics mechanisms responsible for the dependence of MHD stability on the rotation direction. One is the correction of the dynamic pressure effect on MHD stability by the ion diamagnetic drift, and the other is the change of the MHD eigenmode structure by the combined effect of plasma rotation and ion diamagnetic drift.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call