Abstract

Climate change is an important driver of bee decline despite the fact that many species might respond to climate change differently. One method to predict how a species will respond to climate change is to identify its thermal tolerance limits. However, differences in thermal tolerance might also occur among distant populations of the same species based on their local environment or even among castes of social insects. Here, we investigated intraspecific differences in thermal tolerance among subspecies of the large earth bumble bee, Bombus terrestris (Apidae). We determined the critical thermal minima and maxima (CTmin and CTmax, respectively) of workers and queens from three lab-reared B. terrestris subspecies (B. t. terrestris, B. t. audax, and B. t. canariensis) which originated from different thermal environments. Our results showed that caste has an influence on critical thermal minima, with queens being most cold-tolerant, but the values of critical thermal maxima were not correlated to caste or size. The thermal tolerance of workers did not differ among the subspecies. Although heat tolerance was similar in queens, B. t. canariensis queens (originating from the warmest environments) were the least cold tolerant. Overall, we showed that B. terrestris may be generally robust against climate warming, but that particular subspecies and/or populations may be more vulnerable to extreme temperature variability. Future research should focus on responses of B. terrestris populations to short, extreme thermal events.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call