Abstract
Two component systems (TCS) mediate specific responses to different conditions and/or pressures. In the quorum sensing Glaesserella parasuis (QSE) BC TCS, qseB, as a response regulator, is closely related to the transcriptional regulation of multiple downstream genes. In this study, the effects of qseB gene deletion, which encodes the response regulator of population density sensing in G. parasuis, were studied through biological characteristics and metabolomic analysis. Based on previous research, we further explored the virulence of ΔqseB mutant strains through cell morphology, adhesion and invasion. The ΔqseB mutant and parent strains were sequenced by metabolome and combined with the previous transcriptome sequencing results for joint analysis. This study aims to clarify the regulatory effect of QseB on the virulence of G. parasuis and lay the foundation for revealing the pathogenic mechanism of G. parasuis. We detected 476 different metabolites, of which 30 metabolites (6.3%) had a significant difference in abundance between SC1401 and ΔqseB (p < 0.05). We conducted a comparative analysis of pathway enrichment on the transcriptome and metabolome, and found that the two omics participate in seven metabolic pathways together. The top 10 KEGG pathways with the largest number of genes and metabolites identified in this experiment are ABC transporters, Biosynthesis of secondary metabolites, Cysteine and methionine metabolism, Purine metabolism, Pyrimidine metabolism, Metabolic pathways, and Nicotinate and nicotinamide metabolism. Analysis of metabolome sequencing results showed that differential metabolites were also enriched in metabolic pathways, such as Purine metabolism, cGMP-PKG signaling pathway and cAMP signaling pathway, which were not found in transcriptome sequencing data. The internal coloration of the mutant strain ΔqseB was uneven, and the adhesion and invasion ability of PAM cell lines were significantly reduced. We speculate that QseB may affect the adhesion and invasion ability of Glaesserella parasuis by influencing substance transport and signal transduction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.