Abstract

To determine the impact of an intra-axonal kurtosis on estimates of the fiber orientation density function (fODF) obtained with fiber ball imaging (FBI). Standard FBI assumes Gaussian diffusion within individual axons and estimates the fODF by applying an inverse generalized Funk transform to diffusion MRI data for b-values of 4000 s/mm2 or higher. However, recent work based on numeric simulations shows that diffusion inside axons is non-Gaussian with an intra-axonal kurtosis of ∼ 0.4. Here, the theory underlying FBI is extended to incorporate an intra-axonal kurtosis. This is done to first order in the intra-axonal kurtosis without making assumptions about the details of the diffusion dynamics and to all orders for a specific model based on a gamma distribution of diffusivities. The first order approximation is used to assess the effect of an intra-axonal kurtosis on FBI estimates for the fODF and axonal water fraction. The gamma distribution model is used to test the validity of the approximation. The first order approximation indicates the estimated fODF is altered by a few percent for an intra-axonal kurtosis of 0.4 in comparison to predictions of standard FBI. If one neglects the intra-axonal kurtosis, the angular resolution of the point spread function for the fODF is changed by <1°, whereas the axonal water fraction is overestimated by ∼ 5%. The gamma distribution model shows that the first order approximation is accurate to within a few percent. The intra-axonal kurtosis has a small impact on fODFs estimated with FBI.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.