Abstract
In 2020, when the novel coronavirus disease 2019 (COVID-19) broke out as a global pandemic, cities in Hubei Province first went into lockdown on 23 January and resumed work and production on 20 March. From February to March 2020, human activities in Hubei decreased significantly, with the average particulate matter smaller than 2.5 μm (PM2.5) concentration standing at 40 μg/m3, which is 21% lower than the expected based on a linear fitting trend in thePM2.5 concentration in Hubei. By using the empirical orthogonal function (EOF) method, this paper comparatively analyzes the spatial-temporal variations of Hubei’s PM2.5 concentration anomaly in February and March 2020 and the same periods of 2016–2019. The results show that the daytime peak of the PM2.5 daily variation in Hubei in a low-emission scenario during COVID-19 declined significantly, to which human activities contributed the most. However, during nighttime, the PM2.5 peak became more prominent, and the meteorological conditions had a more noticeable effect on the PM2.5 concentration. In addition, during COVID-19, there was a great drop in PM2.5 pollution accumulated from local sources within the urban circle of Wuhan City, while an increase was seen in central-western Hubei due to the inter-regional pollutant transport. Thus, the high PM2.5 concentration center in the urban circle of Wuhan disappeared, but the pollution transport channel cities in central-western Hubei remained as high-PM2.5-concentration centers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.