Abstract

Simple SummaryDiscovery of predictive and prognostic radiomic features in cancer is currently of great interest to the radiologic and oncologic community. Tumor phenotypic and prognostic information can be obtained by extracting features on tumor segmentations, and it is typically imaging analysts, physician trainees, and attending physicians who provide these labeled datasets for analysis. The potential impact of level and type of specialty training on interobserver variability in manual segmentation of NSCLC was examined. Although there was some variability in segmentation between readers, the subsequently extracted radiomic features were overall well correlated. High fidelity radiomic feature extraction relies on accurate feature extraction from imaging that produce robust prognostic and predictive radiomic NSCLC biomarkers. This study concludes that this goal can be obtained using segmenters of different levels of training and clinical experience.This study tackles interobserver variability with respect to specialty training in manual segmentation of non-small cell lung cancer (NSCLC). Four readers included for segmentation are: a data scientist (BY), a medical student (LS), a radiology trainee (MH), and a specialty-trained radiologist (SK) for a total of 293 patients from two publicly available databases. Sørensen–Dice (SD) coefficients and low rank Pearson correlation coefficients (CC) of 429 radiomics were calculated to assess interobserver variability. Cox proportional hazard (CPH) models and Kaplan-Meier (KM) curves of overall survival (OS) prediction for each dataset were also generated. SD and CC for segmentations demonstrated high similarities, yielding, SD: 0.79 and CC: 0.92 (BY-SK), SD: 0.81 and CC: 0.83 (LS-SK), and SD: 0.84 and CC: 0.91 (MH-SK) in average for both databases, respectively. OS through the maximal CPH model for the two datasets yielded c-statistics of 0.7 (95% CI) and 0.69 (95% CI), while adding radiomic and clinical variables (sex, stage/morphological status, and histology) together. KM curves also showed significant discrimination between high- and low-risk patients (p-value < 0.005). This supports that readers’ level of training and clinical experience may not significantly influence the ability to extract accurate radiomic features for NSCLC on CT. This potentially allows flexibility in the training required to produce robust prognostic imaging biomarkers for potential clinical translation.

Highlights

  • Lung cancer is the leading cause of cancer-related death in the United States [1].Non-small cell lung cancer (NSCLC) represents the majority of primary lung cancers and carries a poor prognosis and low overall survival [2]

  • A total of 89 patients were in the non-small cell lung cancer (NSCLC)- Radiomics-Genomics-Lung3 dataset, 3 of whom did not have available data and were excluded from the study

  • There is some variability in tumor contouring for imaging segmentations between readers, the extracted radiomic features were overall well correlated in observers

Read more

Summary

Introduction

Lung cancer is the leading cause of cancer-related death in the United States [1].Non-small cell lung cancer (NSCLC) represents the majority of primary lung cancers and carries a poor prognosis and low overall survival [2]. Over the past decade it has become evident that quantitative features are embedded in conventional medical imaging data, not appreciable to the human eye [3] These radiomics features are a reflection of tissue architecture, heterogeneity, and pericellular environment and can be harnessed to construct tissue signatures that correlate with clinically relevant biomarkers, including tumor histologic subtype, mutational status, degree of infiltration with tumor infiltrating lymphocytes, as well as therapeutic endpoints such as overall survival [4,5,6,7,8,9]. These imaging “phenotypes” provide valuable data that may enhance personalization of medical care in oncology [10]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call