Abstract

Recent theoretical developments revealed that reinforced concrete (RC) structures are susceptible to deterioration risk upon exposure to high temperatures where the mechanical properties of their constituents are affected and therefore require upgrading their overall performance. However, the overall behavior could be improved by strengthing the RC beams using the well-known carbon fiber-reinforcement polymers (CFRP) materials where its efficiency is highly limited by detachment, and debonding problems appear as a result of the weakness in the bond between the concrete surface and the strengthening material or upon the stress concentration induced by the various anchoring systems. The CFRP sheets have been integrated as internal reinforcement in the maximum bending zone within the thermally damaged beams, a new technology used in this study. The suggested method was the first of its kind and did not need an adhesive to be applied where debonding problem is eliminated. In contrast to conventionally reinforced steel, CFRP composite materials are fully compatible with flexural steel and constrained concrete. A total of 40 RC with (150 × 200) mm2 and an overall length of 1100 mm concrete beams were cast, and the studied parameters were the CFRP length, position, and exposure temperature. The internal strengthening technique has been found to ensure the full utilization of the strengthening material where the externally-strengthened beams fail preceding the CFRP strain reached, and this was confirmed using the linear weighted sum method where the internal strengthening has the highest ranking based on the mechanical characteristics comparisons. Moreover, the internal CFRP reinforcement improves RC beam performance, strength, stiffness, toughness, and serviceability more than exterior CFRP sheets. However, the enhancement percentages are twice as much for internal strengthening as the external one. It has also been found that the reinforcement's location substantially impacted the number and length of flexural cracks and its failure mode. In addition, for every 1% reduction in concrete compressive strength in heat damage, the average ultimate load was reduced by 0.8%. The CFRP profitability indexes decrease as sheet number and temperature increase; the average toughness decrease at 150 °C, 250 °C, and 500 °C is 12%, 21%, and 47%, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.