Abstract

HypothesisLiposomes made of single-chain amphiphiles and a large amount of sterols display several advantages including a limited permeability. In the present paper, we examine the possibility to prepare such non-phospholipid liposomes with interfacial polyethylene glycol (PEG) in order to improve their circulation in the blood stream. Cholesterol (Chol) was chosen as the PEG anchor. ExperimentsThe phase behavior of mixtures of palmitic acid (PA) and cholesterol including various proportions of PEGylated cholesterol (PEG-Chol) was characterized. In conditions leading to the formation of fluid bilayers, properties of the resulting liposomes were assessed. FindingsUp to 20mol% of PEGylated cholesterol could be introduced without significant perturbations in fluid bilayers made of PA and cholesterol. With 10mol% PEG-Chol, PA/Chol/PEG-Chol liposomes showed a very limited permeability to calcein and doxorubicin. Doxorubicin could be actively loaded in PA/Chol/PEG-Chol liposomes with a high drug loading efficiency and a high drug to lipid ratio. Pharmaco-kinetic experiments in rats indicated that interfacial PEG reduced the clearance of PA/Chol liposomes compared to the naked ones. However the lifetime of these non-phospholipid liposomes in the blood circulation was considerably shorter than that observed for control PEGylated phospholipid liposomes, a phenomenon associated with the negative interfacial charge of the PA/Chol/PEG-Chol liposomes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.