Abstract

Swarm robotic is well known for its flexibility, scalability and robustness that make it suitable for solving many real-world problems. Source searching which is characterized by complex operation due to the spatial characteristic of the source intensity distribution, uncertain searching environments and rigid searching constraints is an example of application where swarm robotics can be applied. Particle swarm optimization (PSO) is one of the famous algorithms have been used for source searching where its effectiveness depends on several factors. Improper parameter selection may lead to a premature convergence and thus robots will fail (i.e., low success rate) to locate the source within the given searching constraints. Additionally, target overshooting and improper initialization strategies may lead to a nonoptimal (i.e., take longer time to converge) target searching. In this study, a modified PSO and three different initializations strategies (i.e., random, equidistant and centralized) were proposed. The findings shown that the proposed PSO model successfully reduce the target overshooting by choosing optimal PSO parameters and has better convergence rate and success rate compared to the benchmark algorithms. Additionally, the findings also indicate that the random initialization give better searching success compared to equidistant and centralize initialization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call