Abstract

A Bacillus subtilis endoxylanase (XBS(i)) sensitive to inhibition by Triticum aestivum L. endoxylanase inhibitor (TAXI) and a mutant thereof (XBS(ni)), uninhibited by TAXI, were used in straight-dough breadmaking to assess the importance of endoxylanase inhibition sensitivity on endoxylanase functionality in the process. With two European wheat flours, the loaf volume improving effect of XBS(ni) at much lower enzyme dosages was substantially larger than that brought about by XBS(i). This coincided with differences in arabinoxylan (AX) hydrolysis. Although XBS(ni) had a lower substrate selectivity for water-unextractable arabinoxylan (WU-AX) than XBS(i), the former solubilized significantly more WU-AX than XBS(i). Because of inhibition, XBS(i) solubilized most of the WU-AX during mixing, whereas, with XBS(ni), the rate of solubilization decreased less with increasing processing time than that with XBS(i). During fermentation and baking and at the highest dosage (600 U/kg of flour of XBS(i) and 60 U/kg of flour of XBS(ni)), XBS(ni) induced a stronger degradation of enzymically solubilized and water-extractable AX than XBS(i). Taken together, the data clearly demonstrate that endoxylanases, which in vitro are inhibited by endoxylanase inhibitors and still are active in the breadmaking process, as demonstrated by their functional (bread volume) enhancing effect, gradually lose their activity in the process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.