Abstract

Constructed wetlands (CWs) can remove nitrogen (N) through plant assimilation and microbial nitrification and denitrification, while it also releases large greenhouse gas nitrous oxide (N2O) into the atmosphere. However, N2O emissions and the underlying microbial mechanisms of CWs when treating high-strength wastewater have not been systematically surveyed. Here, the effect of three influent strengths on N2O emissions in a pilot-scale CW treatment of swine wastewater was determined and the underlying microbial mechanisms were explored. The results showed that the removal rates of ammonium (NH4+) and total nitrogen (TN) increased significantly with the increasing influent strengths, however, the ratio of N2O emission/TN removal rose by 1.5 times at the same time. Quantitation of microorganisms responsible for N-cycle in the sediment indicated that the abundance of ammonia-oxidizing bacteria (AOB) in high influent strengths (COD, 962.38 ± 3.05 mg/L; NH4+, 317.89 ± 4.24 mg/L) was 51.6-fold compared with that in low influent strengths (COD, 516.94 ± 4.18 mg/L; NH4+, 100.65 ± 2.65), and AOB gradually replaced ammonia-oxidizing archaea (AOA) to dominate ammonia oxidizers. Structural equation models demonstrated that NO2− accumulations promoted the ratio of AOB/AOA, which further led to an increase in the ratio of N2O emission/TN removal. It is worth noting both the N removal rates and N2O emissions increased with the increasing influent strength. To obtain reduced N2O emissions, pretreatment technology for strength reduction should be supplemented before high-strength wastewater enters the CWs. This study may shed new light on the sustainable operation and application of CWs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.