Abstract

BackgroundChronic obstructive pulmonary disease (COPD) is known to greatly affect ventilation (V) and perfusion (Q) of the lung through pathologies such as inflammation and emphysema. However, there is little direct evidence regarding how these pathologies contribute to the V/Q mismatch observed in COPD and models thereof. Also, little is known regarding how smoking cessation affects V/Q relationships after inflammation and airspace enlargement have become established. To this end, we have quantified V/Q on a per-voxel basis using single photon emission computed tomography (SPECT) in mouse models of COPD and lung obstruction.MethodsThree distinct murine models were used to investigate the impact of different pathologies on V/Q, as measured by SPECT. Lipopolysaccharide (LPS) was used to produce neutrophilic inflammation, porcine pancreatic elastase (PPE) was used to produce emphysema, and long-term cigarette smoke (CS) exposure and cessation were used to investigate the combination of these pathologies.ResultsCS exposure resulted in an increase in mononuclear cells and neutrophils, an increase in airspace enlargement, and an increase in V/Q mismatching. The inflammation produced by LPS was more robust and predominantly neutrophilic, compared to that of cigarette smoke; nevertheless, inflammation alone caused V/Q mismatching similar to that seen with long-term CS exposure. The emphysematous lesions caused by PPE administration were also capable of causing V/Q mismatch in the absence of inflammation. Following CS cessation, inflammatory cell levels returned to those of controls and, similarly, V/Q measures returned to normal despite evidence of persistent mild airspace enlargement.ConclusionsBoth robust inflammation and extensive airspace enlargement, on their own, were capable of producing V/Q mismatch. As CS cessation resulted in a return of V/Q mismatching and inflammatory cell counts to control levels, lung inflammation is likely a major contributor to V/Q mismatch observed in the cigarette smoke exposure model as well as in COPD patients. This return of V/Q mismatching to control values also took place in the presence of mild airspace enlargement, indicating that emphysematous lesions must be of a larger volume before affecting the lung significantly. Early smoking cessation is therefore critical before emphysema has an irreversible impact on gas exchange.

Highlights

  • Ventilation (V) and perfusion (Q) are fundamental physiological processes within the lung contributing to gas exchange, and the relationship between these processes is dysfunctional in patients with chronic obstructive pulmonary disease (COPD) [1]

  • The objective of the current study was to investigate the V/Q perturbations associated with two of the major pathologies associated with Chronic obstructive pulmonary disease (COPD) using mouse models of neutrophilic inflammation and emphysema

  • Work by Suga et al [11] has begun to explore the V/Q relationships in COPD patients with advanced emphysema but our results suggest that changes in V/Q may not be apparent, due to airspace enlargement alone, until this pathology has progressed substantially as evidenced by the lack of V/Q mismatching in the presence of mild emphysema in cessation mice

Read more

Summary

Introduction

Ventilation (V) and perfusion (Q) are fundamental physiological processes within the lung contributing to gas exchange, and the relationship between these processes is dysfunctional in patients with chronic obstructive pulmonary disease (COPD) [1]. Chronic obstructive pulmonary disease (COPD) is known to greatly affect ventilation (V) and perfusion (Q) of the lung through pathologies such as inflammation and emphysema. Little is known regarding how smoking cessation affects V/Q relationships after inflammation and airspace enlargement have become established. To this end, we have quantified V/Q on a per-voxel basis using single photon emission computed tomography (SPECT) in mouse models of COPD and lung obstruction

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call