Abstract

Although virtually every overhead HVdc line is based on line commutated converter (LCC) technology, hardly any work has been reported on modeling and analysis of the impact of inertia and effective short circuit ratio on control of frequency in weak grids interfacing LCC-HVdc and onshore doubly fed induction generator (DFIG)-based wind farms. This paper develops a comprehensive modeling and stability analysis framework of a weak grid that interfaces an LCC-HVdc station and a DFIG-based wind farm. To that end, a nonlinear averaged phasor model of the system is derived, which is then benchmarked against a detailed switched model. The averaged model is linearized to design a frequency controller for the LCC-HVdc rectifier station. Participation factor and eigenvalue sensitivity measures indicate that the ac system electromechanical mode and the “HVdc PLL” mode are highly sensitive to changes in effective dc inertia constant and effective short circuit ratio, respectively. Root-locus analysis in a progressively weak grid validates these results. A systematic design process of the frequency controller parameters reveals a negative interaction between the “generator speed-HVdc PLL-frequency controller” mode and the “DFIG-GSC controller” mode.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.